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FLUID FLOW IN CURVILINEAR FLEXIBLE PIPES WITH
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Abstract. A two-dimensional model describing the elastic properties of the wall of a curved flexible pipe is
presented. This model takes the layered nature of the flexible pipe, the interaction of the wall with the surrounding
material and the fluid flow into account and is built by means of a dimension reduction procedure. The considered
object can be served as a model for an implant of blood vessel purpose-built from artificial materials for short-term
using. In comparison with Ghosh et al. (2018) we consider the most general case of canonical shapes of pipes
with a curved axis, variable radius, and equally spaced layers.
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1 Introduction. Formulation of the problem

We consider a segment of a flexible pipe and denote the hollow interior by Ω. Let Γ denote
the part of the flexible pipe wall surrounding the region Ω. Γ has a layered structure with the
layers separated by surfaces Γin,Γ1, . . . ,Γm,Γout where Γin denotes the interior boundary of Γ
and Γout denotes the exterior boundary of Γ. In our considerations these layers are typically
made of anisotropic elastic material. We assume that a central line is given and that it has a
general geometry allowing curvature and torsion. We also assume that along the chosen central
line, the pipe has a circular cross-section with slightly varying radius.

For some time interval [0, T ], let the velocity field of the channel inside the pipe be given by
v : Ω× [0, T ] → R3. The displacement field in the pipe shell is denoted by u : Γ× [0, T ] → R3,
u = (u1, u2, u3). Let p : Ω× [0, T ] → R denote the pressure associated with the fluid (blood) in
the pipe.

The relation between the elastic stress tensor, denoted by σ = {σij}3i,j=1, and the elastic

strain tensor, denoted by ε = {εij}3i,j=1, in the vessel wall is given by the Hooke’s law

σij =

3∑
k,l=1

Akl
ijεkl (1)

with Akl
ij being the stiffness tensor having the symmetries Akl

ij = Akl
ji = Alk

ji . We assume that Akl
ij

are constant across each layer, which can be different for different layers. The strain tensor and
the displacement vector have the relation

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (2)
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From the equilibrium conditions in the pipe shell, we get the equation

∇ · σ = ρ
∂2u

∂t2
in Γ, (3)

where ρ is the pipe shell mass density which is assumed to be piecewise continuous.
On the inner boundary Γin, with h being a small parameter defined in the next section, we

have
σn = hρbF and ∂tu = v, (4)

where ρb is the blood density and F is the hydrodynamic force in the blood, v is the velocity
field of the blood stream and n is the unit outward normal on Γin. On the outer boundary Γout,
we have

σn+ hKu = hf , (5)

where K is the tensor corresponding to the elastic response of the surrounding material so that
Ku = k(u · n)n for some given constant k and f is the force exerted on the pipe by external
factors.

The flow of fluid inside the pipe is modelled by the Stoke’s equation

∂tv − ν∆v +∇p = g and ∇ · v = 0 in Ω, (6)

where ν is the dynamic viscosity of fluid (blood) and g is the acceleration due to gravity.

2 Preliminaries and notations

2.1 Setting up a curvilinear coordinate system

We begin by choosing a suitable coordinate system that simplifies the computations even in the
case of the most general geometry of the pipe. We assume a centre curve of the pipe to be
known and given by an arc-length perameterized curve c ∈ C2([0, L],R3) for some positive real
L. We may assume that c(0) = (0, 0, 0)T and that c′(0) = (0, 0, 1)T . We denote the arc-length
parameter by s.

We first need to build a right handed coordinate frame at each point c(s). It seems natural
to take one of the coordinate directions to be c′(s) and the other two to be perpendicular to it.
Let e1 be one of these vectors having unit length.

We could use the Frenet frame to define e1(θ, s) = cos θN(s) − sin θB(s) where N and B
are the unit normal and the unit binormal of the curve c, where we assumed that the curve
has non vanishing curvature. Consider the surface S(θ, s) = c(s) + rδe1(θ, s) for some rδ >
0. With the help of the Serret-Frenet formulas, one can see that even in this simple case,
(∂S(θ, s)/∂θ) · (∂S(θ, s)/∂s) ̸= 0 unless the curve is torsion free. In other words, the coordinate
lines do not intersect at right angles when c has nonzero torsion.

In order to get coordinate lines on simple surfaces (as S considered above) to intersect
perpendicularly, we put a requirement that the change in e1 as we travel along the central line,
should be coplanar with e1 and c′(s). Then we have

∥e1∥2 = 1 ⇒ ∂

∂s
e1 · e1 = 0.

Also, as c′ is perpendicular to e1 at each s, it follows that

e1 · c′ = 0 ⇒ ∂

∂s
e1 · c′ = −c′′ · e1.

Finally, coplanarity condition gives

∂

∂s
e1 · (e1 × c′) = 0 ⇒ ∂

∂s
e1 = (

∂

∂s
e1 · c′)c′ + (

∂

∂s
e1 · e1)e1 = −(c′′ · e1)c′.
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We choose the initial value of e1 at s = 0 to be (cos θ, sin θ, 0)T for some θ ∈ [0, 2π]. Then
we can write the following partial differential equation system that defines e1

∂

∂s
e1(θ, s) = −(c′′(s) · e1(θ, s))c′(s) and e1(θ, 0) = (cos θ, sin θ, 0)T .

Defining e2(θ, s) = c′(s) × e1(θ, s), the triple {e1(θ, s), e2(θ, s), c′} forms an orthonormal
frame at each point c(s) for a given angle θ. As a result, we have

∂

∂s
e2(θ, s) = c′′(s)× e1(θ, s) + c′(s)× ∂

∂s
e1(θ, s) = c′′(s)× (e2(θ, s)× c′(s)) + 0

= c′′(s) · c′(s)e2(θ, s)− c′′(s) · e2(θ, s)c′(s) = −c′′(s) · e2(θ, s)c′(s).

The equations describing the vectors e1 and e2 suggest that the frame c′, e1, e2 is a so called
’rotation minimizing frame’, see Bishop (1975); Klok (1986).

The initial condition reads

e2(θ, 0) = c′(0)× e1(θ, 0) = (− sin θ, cos θ, 0)T .

We can assume a rotation matrix valued function R so that ei(θ, s) = R(s)ei(θ, 0) for i = 1, 2.
Then it is readily obtained that

∂

∂θ
e1(θ, s) = e2(θ, s) and

∂

∂θ
e2(θ, s) = −e1(θ, s).

The parameter θ corresponds to the orientation of the vectors e1(θ, s) and e2(θ, s) for fixed
s with respect to some reference vector in the same disc perpendicular to the corresponding
tangent vector c′(s) of the central curve. Note that in the torsion free case when c′′ is never
zero and c′′(0) = (1, 0, 0)T , the orthonormal frame is same as {cos θN(s)− sin θB(s), sin θN(s)+
cos θB(s), c′(s)} where N and B are respectively the unit normal and the unit binormal of the
curve c.

We have two parameters, namely, θ and s, that describe the inner boundary of the shell of
the pipe. Next we construct a coordinate system in the shell. In order to include the information
of the layered structure of the pipe shell, we assume that the layers are given as level sets of a
sufficiently smooth function G : R3 → R. The innermost layer is given as {x ∈ R3|G(x) = 0}
while the outermost layer is given as {x ∈ R3|G(x) = H}, where H > 0 is the mean thickness
of the pipe shell. In particular, G could be assumed to have the form G(x) = d(x)a(x), where
d(x) gives the distance of x from Γin and a(x) gives a suitable scaling so as to keep G constant
over a given surface. The normal vector field across the layers is given by ∇G. Let another
parameter n be such that it corresponds to the layer (we assume a continuum of layers filling up
Γ) to which a given point belongs. In other words, let n = G(x). Differentiating with respect
to n, we get

1 = ∇G(x) · ∂

∂n
x.

On the other hand, the integral lines corresponding to the parameter n for fixed θ and s, have
tangents ∂x/∂n parallel to ∇G. Hence, we get the integral lines by solving ordinary differential
equation

∂

∂n
x(n) =

∇G(x(n))

|∇G(x(n))|2
.

The initial condition on such lines are that they originate from Γin where n = 0. In other words,
for some θ ∈ [0, 2π] and s ∈ [0, L],

x(0) = c(s) + r(θ, s)en(θ, s)

where r(θ, s) is assumed to be a known radius function of the interior channel.
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Thus, we have three parameters describing the pipe shell in a curvilinear coordinate system.
The parameter n corresponds to the direction perpendicular to the layers, s corresponds to the
tangential direction along the axial curve while θ corresponds to the direction tangential to the
closed curve determined by fixed n and s.

The relation between the Cartesian and the curvilinear coordinate system in the wall is as
given below.

x(n, θ, s) = c(s) + r(θ, s)en(θ, s) +

∫ n

0

∇G(x(τ))

|∇G(x(τ))|2
dτ.

2.2 Basis vectors and differential operators

In order to use the formulae mentioned in the previous section in terms of the new coordinates,
we need to express vectors, tensors and differential operators in a suitable basis or cobasis. A
detailed presentation of tensor algebra in curvilinear coordinates for application to continuum
mechanics can be found in appendix D of Lurie (2005).

In what follows, we let ∂1 = ∂/∂n, ∂2 = ∂/∂θ and ∂3 = ∂/∂s. Also, we adopt Einstein’s
summation convention, that is, similar indices when appearing concurrently at both top and
bottom positions in a term are assumed to be summed over the index set which is {1, 2, 3} in
our case.

We now define a set of main basis vectors for tangent vectors inside the shell structure. Let
xi = ∂ix for i = 1, 2, 3 and some x ∈ Γ. This leads to the definition of the 3 × 3 metric tensor
as gij = xi · xj for i, j = 1, 2, 3. Let g denote the matrix [gij ].

We may also define a set of cobasis vectors for the same space (cf. appendix D of Lurie
(2005)) which are given as xi = gijxj , where gij is such that gijgjk = δik with δik being the
Kronecker delta. Note that basis vectors have bottom indices while cobasis vectors have top
indices. In our case, both the vectors x1 and x1 are parallel to the normal direction across the
layers at each point in the shell. This makes it easier for us to formulate the physical laws.

In order to express derivatives in a curvilinear system, we need the Christoffel symbols
corresponding to the curvilinear system which are defined as Γi

jk = xi · ∂jxk for i, j, k = 1, 2, 3.

They are symmetric in the lower indices, i.e., Γi
jk = Γi

kj .

With the help of these relations, we can define the gradient operator as ∇ = xi∂i. We are
now in a position to express quantities like gradient and divergence of tensors in our curvilinear
coordinates. For any vector v = vjx

j = vjxj , its gradient is given as

∇v =
(
∂ivj − Γk

ijvk

)
xixj =

(
∂iv

j + Γj
ikv

k
)
xixj .

Also, for any 2-tensor σ = σijx
ixj = σijxixj , its divergence is given as

∇ · σ = gij
(
∂iσjk − Γl

ijσkl − Γl
ikσjl

)
xk = (∂iσ

ik + Γi
ijσ

jk + Γk
ijσ

ij)xk.

Similarly, the deformation (symmetric gradient) tensor for any vector is given as

2 def(v) = (∇v + (∇v)∗) = (∂ivj + ∂jvi − 2Γk
ijvk)x

ixj .

2.3 Volume elements

The volume element with respect to the new variables is

dv =
√
det(g)dndθds. (7)

Similarly, the surface element on a surface with fixed n is given as

dS =
√
g22g33 − (g23)2dθds. (8)
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2.4 Voight notation for tensors

As is evident from the above mentioned formulae, one has to deal with a good number of indices
in each of the equations. The stress and strain tensors are each 3×3 tensors whereas the stiffness
tensor is a 3× 3× 3× 3 tensor. This means it has 91 components. But, we notice that all these
tensors have some symmetries which greatly reduce the number of independent components.
We use the Voight notation to write only the independent quantities. In this notation, strain
tensor ε = εijx

ixj gets the representation

ε =
(
ε11,

√
2ε12,

√
2ε13, ε22, ε33,

√
2ε23

)T
.

We express the stress tensor σ = σijxixj in the Voight notation by

σ =
(
σ11,

√
2σ12,

√
2σ13, σ22, σ33,

√
2σ23

)T
.

On the other hand, the symmetric gradient operator is represented as the matrix D defined
as

DT =

∂1 − Γ1
11

1√
2
(∂2 − 2Γ1

12)
1√
2
(∂3 − 2Γ1

13) −Γ1
22 −Γ1

33
1√
2
(−2Γ1

23)

−Γ2
11

1√
2
(∂1 − 2Γ2

12)
1√
2
(−2Γ2

13) ∂2 − Γ2
22 −Γ2

33
1√
2
(∂3 − 2Γ2

23)

−Γ3
11

1√
2
(−2Γ3

12)
1√
2
(∂1 − 2Γ3

13) −Γ3
22 ∂3 − Γ3

33
1√
2
(∂2 − 2Γ3

23)

 . (9)

The divergence operator for a 2 tensor gets the matrix reprepresentation D∗ which is the
Hermitian conjugate of D with respect to surface measure defined in (8), i.e.∫

Γ
(D∗u)T v

√
g22g33 − (g23)2dθds = −

∫
Γ
uT (Dv)

√
g22g33 − (g23)2dθds

for all u, v ∈ L2(R2,R3) such that u|s=0,L = 0 = v|s=0,L. We have in this case,

D∗ =

 ∂1+Γi
i1+Γ1

11
1√
2
(∂2+Γi

i2+2Γ1
12)

1√
2
(∂3+Γi

i3+2Γ1
13) Γ1

22 Γ1
33

1√
2
(2Γ1

23)

Γ2
11

1√
2
(∂1+Γi

i1+2Γ2
12)

1√
2
(2Γ1

13) ∂2+Γi
i2+Γ2

22 Γ2
33

1√
2
(∂3+Γi

i3+2Γ2
23)

Γ3
11

1√
2
(2Γ3

12)
1√
2
(∂1+Γi

i1+2Γ1
13) Γ3

22 ∂3+Γi
i3+Γ3

33
1√
2
(∂2+Γi

i2+2Γ3
23)


so that for σ = σijxixj , we have that ∇ · σ = D∗ (σ11,

√
2σ12,

√
2σ13, σ22, σ33,

√
2σ23

)T
.

3 Modelling of elastic shell

In this section, we will obtain two-dimensional model of the elastic pipe shell, cf.
Grotberg & Jensen (2004); Moireau et al. (2012). We follow the steps as in Kozlov & Nazarov
(2016), i.e. we perform dimension reduction of the model given by equations (3), (4) and (5) by
identifying a small parameter and assuming asymptotic expansions of the displacement vector,
the stress and the strain tensors.

3.1 Asymptotic ansatz

A property of the pipe shell is that the thickness of the pipe wall is extremely small compared
to some charateristic length l. So a natural choice for a small parameter in our case is h =
(mean thickness of wall)/ (characteristic length) = H/l. This also means that the physical
quantities in question change much faster across the wall layers as compared to along the layers.
This prompts us to introduce a fast variable ξ = h−1n ∈ [0, l].

We then assume that the displacement vector u admits the expansion

u(n, θ, s) = u0(ξ, θ, s) + hu1(ξ, θ, s) + h2u2(ξ, θ, s) + · · · . (10)
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We denote the coordinate vector of uk in the basis (x1,x2,x3) by Uk = (uk1, uk2, uk3)
T .

The differential operatorD defined in (9) also gets the following expansion due to the variable
change:

D = h−1B∂ξ + E + hD1 + h2D2 + · · · , (11)

where, E = C +D0 and

BT =

1 0 0 0 0 0
0 1√

2
0 0 0 0

0 0 1√
2

0 0 0

 , CT =

0
1√
2
∂2

1√
2
∂3 0 0 0

0 0 0 ∂2 0 1√
2
∂3

0 0 0 0 ∂3
1√
2
∂2

 (12)

With (Γk
ij)l denoting the coefficient of hl in the infinite series expression of Γk

ij , we have for
m ≥ 0

DT
m = −

(Γ1
11)m

√
2(Γ1

12)m
√
2(Γ1

13)m (Γ1
22)m (Γ1

33)m
√
2(Γ1

23)m
(Γ2

11)m
√
2(Γ2

12)m
√
2(Γ2

13)m (Γ2
22)m (Γ2

33)m
√
2(Γ2

23)m
(Γ3

11)m
√
2(Γ3

12)m
√
2(Γ3

13)m (Γ3
22)m (Γ3

33)m
√
2(Γ3

23)m

 . (13)

We also use the following expansion:

∇G(x(hξ, θ, s)) = ∇G(x(0, θ, s)) + hξ
∂

∂n
∇G(x(0, θ, s)) +

h2ξ2

2

∂

∂n
∇G(x(0, θ, s)) + · · · .

For the distance function d, we have that ∥∇d(x)∥ = 1 for all x ∈ Γ. Also, d(x(0, θ, s)) = 0.
Hence,

|∇G(x(0, θ, s))| = |a(x(0, θ, s))∇d(x(0, θ, s)) + d(x(0, θ, s))∇a(x(0, θ, s))| = |a(x(0, θ, s))|.

3.2 The two–dimensional model

Let F denote the coordinate vector of the hydrodynamic force F in the basis (x1,x2,x3). Let
M be the leading term in the infinite series expression of g−1 with respect to h. So we have

M =


|a(x(0, θ, s))|2 0 0

0 r2s+(1−rc′′·en)2
(r2θ+r2)(1−rc′′·en)2+r2r2s

−rθrs
(r2θ+r2)(1−rc′′·en)2+r2r2s

0 −rθrs
(r2θ+r2)(1−rc′′·en)2+r2r2s

r2θ+r2

(r2θ+r2)(1−rc′′·en)2+r2r2s

 .

Furthermore, assume ET = [ET
1 |ET

2 ] with each block being a 3× 3 matrix. So that,

E2 =

 −(Γ1
22)0 ∂2 − (Γ2

22)0 −(Γ3
22)0

−(Γ1
33)0 −(Γ2

33)0 ∂3 − (Γ3
33)0

−
√
2(Γ1

23)0
1√
2
∂3 −

√
2(Γ1

23)0
1√
2
∂2 −

√
2(Γ1

23)0

 .

Similarly, we have

E∗
2 =

 (Γ1
22)0 (Γ1

33)0
1√
2
(2(Γ1

23)0)

∂2 + Γi
i2 + (Γ2

22)0 (Γ2
33)0

1√
2
(∂3 + (Γi

i3)0 + 2(Γ2
23)0)

(Γ3
22)0 ∂3 + (Γi

i3)0 + (Γ3
33)0

1√
2
(∂2 + (Γi

i2)0 + 2(Γ3
23)0)

 .

By A =

[
A†† A†‡
AT

†‡ A‡‡

]
, we denote the 6 × 6 matrix, with each block being 3 × 3 matrix,

corresponding to the stiffness tensor such that

A
(
ε11,

√
2ε12,

√
2ε13, ε22, ε33,

√
2ε23

)T
=

(
σ11,

√
2σ12,

√
2σ13, σ22, σ33,

√
2σ23

)T
.
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We set K to be the matrix representation of the tensor K in the appropriate basis. In our case,
we have

K =

k 0 0
0 0 0
0 0 0

 . (14)

With the above notations, we have the following theorem that gives us a two–dimensional
model of the shell of a pipe.

Theorem 1. In the formal asymptotic expansion1 of the displacement vector u given in (10),
we have that U0 is independent of ξ and it satisfies the relation

E∗
2QE2U0 − ρ̄M∂2

t U0 − |∇G0(x(0, θ, s))|2KU0(θ, s) = ρbF (θ, s)− Fext, (15)

where Q =
l∫
0

(A‡‡ −AT
†‡A

−1
†† A†‡)dξ and ρ̄ =

l∫
0

ρdξ.

Proof. Proof can be found in Ghosh et al. (2018) and we present it here for readers convenience.
Choosing the basis (x1,x2,x3) to express the vectors, equation (3) can be written as

D∗ADU = g−1ρ∂2
t U in Γ, (16)

where U = [u1, u2, u3]
T so that u = uix

i. The outer boundary condition is

BTADU = h(Fext − g−1KU) on Γout, (17)

where f denotes the column representing Fext in the basis (x1,x2,x3).
After applying the substitution ξ = h−1n and the asymptotic ansatz (10) to (16) and (17),

we compare the terms of various orders of h on both sides of the resulting equation. Comparing
terms of order h−2 in (16) and h−1 in (17), we get the following system

BT∂ξAB∂ξU0 = (0, 0, 0)T in Γ,

BTAB∂ξU0 = (0, 0, 0)T on Γout.

Solving this system and using the fact that BTAB is nonsingular, we obtain

∂ξU0 = (0, 0, 0)T in Γ.

This proves the first statement of the theorem that U0 is independent of ξ.
Next we compare terms of order h−1 in (16) and h0 in (17). Using the fact that ∂ξU0 =

(0, 0, 0)T , we get
BT∂ξA(B∂ξU1 + EU0) = (0, 0, 0)T in Γ,

BTA(B∂ξU1 + EU0) = (0, 0, 0)T on Γout.

Solving the above system, we get

BTA(B∂ξU1 + EU0) = (0, 0, 0)T

⇔ ∂ξU1 = −(BTAB)−1BTAEU0. (18)

Lastly, we compare terms of order h0 in (16) and h in (17). This leads us to the following
system

BT∂ξA(B∂ξU2 + EU1 +D1U0) + E∗A(B∂ξU1 + EU0) = Mρ∂2
t U0 in Γ, (19)

1We assume (10) to be an asymptotic expansion which can be shown mathematically to be true but we leave
this out as it is not relevant for the primary focus of this article.
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BTA(B∂ξU2 + EU1 +D1U0) = Fext − |∇G0|2KU0 on Γout. (20)

On the other hand, the inner boundary conditions yield the following relation;

BTA(B∂ξU2 + EU1 +D1U0) = ρbF on Γin. (21)

Note that Γout corresponds to ξ = l = H/h while Γin corresponds to ξ = 0. Integrating (19)
with respect to ξ from 0 to l and using (20) and (21), we have

Fext − |∇G0(x(0, θ, s))|2KU0(θ, s)− ρbF (θ, s) +

l∫
0

E∗A(B∂ξU1 + EU0)dξ = Mρ̄∂2
t U0(θ, s).

Now (18) gives us that

E∗A(B∂ξU1 + EU0) = E∗(A−AB(BTAB)−1BTA)EU0 = E∗
2(A‡‡ −AT

†‡A
−1
†† A†‡)E2U0.

Note that E∗, E and U0 are independent of ξ. Hence we obtain

E∗
2QE2U0 − ρ̄M∂2

t U0 − |∇G0(x(0, θ, s))|2KU0(θ, s) = ρbF (θ, s)− Fext.

4 Examples of canonical shapes of pipes and their walls

In this section, we present a few simple cases of supplementary ones considered in Ghosh et al.
(2018) and we look at the resulting expressions in the final model for each of these cases.

4.1 The straight cylinder

In this case, we assume the central curve to be a straight line. That is, c′′(s) = 0. We also have
a fixed radius, so rθ = 0 = rs. Then with the same initial conditions for the curve, we have for
all s ∈ [0, L] We get the orthonormal frame for all s ∈ [0, L] and θ ∈ [0, 2π] as

e1(θ, s) = e1(θ, 0) = (cos θ, sin θ, 0)T and e2(θ, s) = e2(θ, 0) = (− sin θ, cos θ, 0)T .

For the distance function d that measures distance from the innermost layer, we have

d(x) =
√

x21 + x22 − r ⇒ ∇d(x) = e1(θ, 0),

where, x = (x1, x2, x3)
T and θ is such that cos θ = x1/

√
x21 + x22 and sin θ = x2/

√
x21 + x22.

Hence,
∇G(0, θ, s) = a(x(0, θ, s))e1(θ, 0).

The matrices D0 and M have the following expressions:

DT
0 =

 2∇a·e1
a3

√
2r∇a·e2

a −
√
2∇a·c′
a ar 0 0

−∇a·e2
ra3

−
√
2

ra 0 0 0 0

5− ∇a·c′
a3

0 0 0 0 0

 ,

and

M =

|a|2 0 0
0 1

r2
0

0 0 1

 .

The differential operator matrices E2 and E∗
2 are given as

E2 =

ar ∂2 0
0 0 ∂3
0 1√

2
∂3

1√
2
∂2

 and E∗
2 =

 −ar 0 0

∂2 − r∇a·e2
a 0 1√

2
(∂3 +

∇a·c′
a )

0 ∂3 +
∇a·c′

a
1√
2
(∂2 − r∇a·e2

a )

 .

Note that all the functions in the above folmulae are evaluated at a point on Γin, where ξ = 0.
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4.2 Pipe with curved axis and equally spaced layers

As in the first example, we take a fixed radius r for the pipe. Also, similar to the previous case,
we assume equally spaced layers and hence |G| = 1. The matrices D0 and M have the following
expressions:

DT
0 =

0 0 0 r −c′′ · e1(1− rc′′ · e1) 0

0 −
√
2
r 0 0 − c′′·e2

r (1− rc′′ · e1) 0

0 0
√
2c′′·e1

1−rc′′·e1 0 rc′′′·e1
1−rc′′·e1

√
2rc′′·e2

1−rc′′·e1

 ,

and

M =

1 0 0
0 1

r2
0

0 0 1
(1−rc′′·e1)

 .

The differential operator matrices E2 and E∗
2 are given as

E2 =

 r ∂2 0

−c′′ · e1(1− rc′′ · e1) − c′′·e2
r (1− rc′′ · e1) ∂3 +

rc′′′·e1
1−rc′′·e1

0 1√
2
∂3

1√
2
∂2 +

√
2rc′′·e2

1−rc′′·e1


and

E∗
2 =

 −r c′′ · e1(1− rc′′ · e1) 0

∂2 − rc′′·e2
1−rc′′·e1

c′′·e2
r (1− rc′′ · e1) 1√

2
(∂3 − rc′′′·e1

1−rc′′·e1 )

0 ∂3 − 2rc′′′·e1
1−rc′′·e1

1√
2
(∂2 − 3rc′′·e2

1−rc′′·e1 )

 .

4.3 Pipe with curved axis, variable radius and equally spaced layers

Here, we take a variable radius r for the pipe. Also, similar to the previous case, we assume
equally spaced layers and hence |G| = 1. Normal to the boundary

n̂ = ∇G =
βe1 − r′c′√
β2 + r′2

.

Relation between the Cartesian coordinates x and the curvilinear ones

x(n, θ, s) = c′(s) + r(s)e1(θ, s) +

∫ n

0

βe1 − r′c′√
β2 + r′2

dτ.

We need basis vectors at n = 0. Let γ = (β2 + r
′2)−1/2, β = 1− rc′′e1, then the contravariant

components are
x1 = γ(βe1 − r′c′), x2 = re2, x3 = βc′ + r′e1,

and covariant components are

x1 = γ(βe1 − r′c′), x2 =
1

r
e2, x3 =

βc′ + r′e1
β2 + r′2

.

Note that if r′ = 0 then γβ = 1. The matrice M has the following expression:

M =

1 0 0
0 1

r2
0

0 0 r2

 .

The differential operator matrices E2 and E∗
2 are given as[

rγβ ∂2 γ2rr′

−r′′γβ + γr′(2r′c′′ · e1 + rc′′′ · e1) − γβ2c′′ · e1 −r−1βc′′ · e2 ∂3 − γ2((r′′ + βc′′ · e1)r′ − (2r′c′′ · e1 + rc′′′ · e1)β)√
2rr′γc′′ · e2 1√

2
∂3 −

√
2r−1r′ 1√

2
∂2 +

√
2γ2rc′′ · e2β

]
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and  −rγβ E12

√
2rr′γc′′ · e2

∂2 − γ2rβc′′ · e2 r−1βc′′ · e2 E23

−γ2rr′ E32
1√
2
∂2 − 3√

2
γ2rβc′′ · e2

 ,

respectively.
Here, E12 = r′′γβ−γr′(2r′c′′ ·e1+rc′′′ ·e1)+rβ2c′′ ·e1, E23 =

1√
2
∂3+

3√
2
r−1r′+ 1√

2
r2(r′(r′′+

βc′′ ·e1)−β(2r′c′′ ·e1+rc
′′′ ·e1)), E32 = ∂3+r−1r′+2γ2(r′(r′′+βc′′ ·e1)−β(2r′c′′ ·e1+rc

′′′ ·e1)).

5 Analysis of the model

5.1 Stiffness tensor

Let us consider an elastic space weakened by the cylindrical void

Ω = {x = (x′, x3) ∈ R2 × R : τ = |x′| =
√
x21 + x22 < R}

of radius R > 0. Assuming the transversal isotropy with the x3-axis of a homogeneous stationary
elastic material in Ξ = R3\Ω̄, we write the equilibrium equations

−∇ · σ(um;x) = 0,x ∈ Ξ, (22)

where um = (u′m, um3 ) is the three dimensional displacement vector and σ(u) the corresponding
stress tensor of rank 2 computed through the Hooke’s law. In the Voigt-Mandel notation, the
strain and stress

ε = (ε11, ε22,
√
2ε21,

√
2ε13,

√
2ε23, ε33)

T

and
σm = (σm

11, σ
m
22,

√
2σm

21,
√
2σm

13,
√
2σm

23, σ
m
33)

T

are related by σm = Amε, where

Am =



λ+ 2µ λ 0 0 0 α
λ λ+ 2µ 0 0 0 α
0 0 2µ 0 0 0
0 0 0 2β 0 0
0 0 0 0 2β 0
α α 0 0 0 γ

 , (23)

λ ≥ 0 and µ > 0 are the classical Lamé constants in the x′-plane while other elastic moduli
α ≥ 0, β > 0 and γ > 0 are of no further use.

The particular problem on fluid (blood) flow requires to describe an interaction of the pipe
wall with the surrounding material. In other words, we have to find out a relation between the
pipe radial dilation

um(x) = uw(x) = uwτ eτ ,x ∈ ∂Ω, (24)

and the traction
σm(um;x)eτ = σw(uw;x)eτ ,x ∈ ∂Ω, (25)

where eτ = (τ−1x′, 0) is the normal vector on ∂Ω. Note that the equations (22) do not involve
the inertia term γm∂2

t u
m(x; t) because of the traditional and reasonable assumption on the

Womersley number Wm to be small in comparison with the Womersley number Ww of the
pipe wall. Moreover, owing to blood vessels are set in so-called vessel beds and in this way are
enveloped by a loose cell material in order to prevent gyrations of the wall so that only the radial
dilation is passed from the vessel wall to the muscle tissue we also assume the same behaviour
for the pipe shell, cf. (24).

60



G. ZAVOROKHIN: FLUID FLOW IN CURVILINEAR FLEXIBLE PIPES WITH LAYERED...

In general case, the mapping (25) 7→(24) is described with the help of the elasticity Neumann-
to-Dirichlet operator which is rather complicated even in our canonical geometry. However, the
above-accepted assumption on the low variability of all mechanical fields allows us to employ
the asymptotic methods of singularly perturbed elliptic problems Maz’ya et al. (2000).

First of all, the transversal isotropy and the absence of the angular variable ϕ ∈ [0, 2π) in (24)
prove that umϕ = um ·eϕ = 0 in ΞR. Furthermore, the low variability recognizes the variable z as
a parameter and eliminates derivatives in z in the Cauchy formulas (2) as well as in equations
(22) which take the form

− ∂

∂x1
σj1(u

m)− ∂

∂x2
σj2(u

m) = 0 in ΞR, j = 1, 2, 3

or, in view of (23), become the plane elasticity system

−µ∆x′umj − (λ+ µ)
∂

∂xj

(
∂um1
∂x1

+
∂um2
∂x2

)
= 0, j = 1, 2, (26)

−β∆x′um3 = 0,x′ ∈ R2\Ω. (27)

At the same time, (24) reads componentwise as follows:

umτ (x′) = uwτ (s), u
m
ϕ (x′) = 0,x′ ∈ Γin, (28)

um3 (x′) = 0,x′ ∈ Γin. (29)

From (27) and (29) we derive that

um3 (x′) = 0,x′ ∈ R2\Ω. (30)

According to (28), the displacement field um′ is axisymmetric and, therefore, in the polar
coordinates (τ, ϕ), we have

umτ (τ, ϕ) =
a

τ
, umϕ (τ, ϕ) = 0, (31)

σm
ττ (u

m′; τ, ϕ) = −2µ
a

τ2
, σm

ϕϕ(u
m′; τ, ϕ) = 2µ

a

τ2
, (32)

σm
τϕ(u

m′; τ, ϕ) = 0. (33)

Finally, (28) gives a = Ruwτ (s) so that

σw(uw; s, ϕ)eτ = −2µ

R
uwτ (s)eτ .

This relation gives the tensor K in (5) while

k =
2µ

R
h−1 in (14)

because K has the factor h in (5).

In this way, we need to assume that the elastic characteristics of the shell and the surrounding
material are in the relation h−2 : 1.
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5.2 Christoffel symbols and metric tensor calculated

General case. We present the values of several quantities used in our case. We use the
big O notation to express the corresponding values in the new variable ξ. Here, we let R =
R(x) = ∇G(x)/|∇G(x)|2 and α = α(θ, s) = ((rθ(θ, s)

2 + r(θ, s)2)(1 − r(θ, s)c′′(s) · en(θ, s))2 +
r(θ, s)2rs(θ, s)

2)−1 in order to have relatively compact expressions. We write all the functions
without their respective arguments in order to have tidy expressions. Subscript appearing in
scalar functions, e.g. rθ mean partial differentiation with respect to the subscripted variable.
We first describe the main basis vectors.

x1 = R,

x2 = rθen + reθ +

∫ n

0
Rθdτ = rθen + reθ +O(h),

x3 = rsen + (1− rc′′ · en)c′ +
∫ n

0
Rsdτ = rsen + (1− rc′′ · en)c′ +O(h).

The metric tensor components are given next.

g11 = |R|2,
g12 = g21 = g13 = g31 = 0,

g22 = |rθen + reθ +

∫ n

0
Rθdτ |2 = r2θ + r2 +O(h),

g33 = |rsen + (1− rc′′ · en)c′ +
∫ n

0
Rsdτ |2 = r2s + (1− rc′′ · en)2 +O(h),

g23 = [rθen + reθ +

∫ n

0
Rθdτ ] · [rsen + (1− rc′′ · en)c′ +

∫ n

0
Rsdτ ] = rθrs +O(h).
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